Improved Dehydrogenation Properties of Ti-Doped LiAlH4: Role of Ti Precursors

نویسندگان

  • Placidus B. Amama
  • John T. Grant
  • Patrick J. Shamberger
  • Andrey A. Voevodin
  • Timothy S. Fisher
چکیده

The dehydrogenation properties of LiAlH4 doped with different Ti precursors (Ti, TiO2, and TiCl3) via ball milling are investigated. The results not only show significant decreases in the decomposition temperatures (Tdec) and activation energies (EA) of the first two dehydrogenation reaction steps of LiAlH4 by doping with TiO2 or TiCl3, but also reveal how each Ti precursor affects the dehydrogenation process. Although doping LiAlH4 with TiCl3 induced the largest decrease in Tdec and EA, TiO2-doped LiAlH4 produced a decrease in Tdec and EA that is quite close to the TiCl3-doped sample as well as superior short-term stability, suggesting that doping with TiO2 has certain advantages over doping with TiCl3. Further, the underlying mechanisms associated with the Ti precursors during the dehydrogenation reaction of LiAlH4 have been studied using quasi in situ X-ray photoelectron spectroscopy. The results reveal that the Ti and Ti reduction processes and the segregation of Li cations to the surface of LiAlH4 during ball milling play critical roles in the improved dehydrogenation properties observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dehydrogenation of pure and Ti-doped Na3AlH6 surfaces from first principles calculations

We have studied the dehydrogenation properties of pure and Ti-doped Na3AlH6 surfaces using density functional theory. For the clean surface dehydrogenation is a multistep process, and involves the desorption of AlH4 complexes which disrupt the structure of the surface. By doping the system with Ti, we found that the segregation energy of Ti is negative, therefore favoring localization of the im...

متن کامل

On the Reversibility of Hydrogen Storage in Novel Complex Hydrides

A comparison of the hydrogen release and uptake (cycling) capability of Ti-doped NaAlH4, LiAlH4 and Mg(AlH4)2 as a function of Ti dopant concentration, temperature, pressure, and cycle number is reported. Temperature programmed desorption revealed hydrogen release capacities of around 3 wt% at 140 C, 3 wt % at 100 C and 6 wt% at 150 C, respectively for the Ti doped Na, Li and Mg alanates. In th...

متن کامل

NbN nanoparticles as additive for the high dehydrogenation properties of LiAlH4.

The effects of NbN nanoparticles synthesized via a simple "urea glass" route on the dehydrogenation properties of LiAlH4 have been systematically investigated. The particle size of the as-synthesized NbN nanoparticles is determined to be about 10 nm. The surface configuration and dehydrogenation behaviors of the 2 mol% NbN-doped LiAlH4 (2% NbN-LiAlH4) system are also discussed. It is found that...

متن کامل

Synthesis of LiAlH4 Nanoparticles Leading to a Single Hydrogen Release Step upon Ti Coating

Lithium aluminum hydride (LiAlH4) is an interesting high capacity hydrogen storage material with fast hydrogen release kinetics when mechanically activated with additives. Herein, we report on a novel approach to produce nanoscale LiAlH4 via a bottom-up synthesis. Upon further coating of these nanoparticles with Ti, the composite nanomaterial was found to decompose at 120 ◦C in one single and e...

متن کامل

NiCo nanoalloy encapsulated in graphene layers for improving hydrogen storage properties of LiAlH4

NiCo nanoalloy (4-6 nm) encapsulated in grapheme layers (NiCo@G) has been prepared by thermolysis of a 3D bimetallic complex CoCo[Ni(EDTA)]2·4H2O and successfully employed as a catalyst to improve the dehydrogenation performances of LiAlH4 by solid ball-milling. NiCo@G presents a superior catalytic effect on the dehydrogenation of LiAlH4. For LiAlH4 doped with 1 wt% NiCo@G (LiAlH4-1 wt% NiCo@G)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016